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TtLe~~ldonor~~ofsugarsdifferquiteextensively~~thefunctionalgroupspnseMgthepyranosyl 

or fiuawsyl moie#. For instama for the most fnqently ocaning sugars, having idea&al leaving gn@s at the 

anom& center and the same promoter system, the ease of generating glycosyl donor p-em incmaes geaemlly in the 

followingorderz 

Sugar unmates (I) < aldoses (II) < deoxy sugam (I&’ < ketoses (IV) < 3deoxy-2-glyculaponates (V) 

obvbwly.depmdinsoQrclativc~oIlsoffunctional gmups, deoxy positionsl aad type of functIoaal &mupr 
quite dmmadc variadaas in the glycosyl donor properties are observed w&h lead to au overlap in these n%ctivity 

categofieu. 

For the giycosyl dottom re@ring the highest activation (categories I, II. III) O-glycosyl UicblomaWWtes were 

shownbyusmdotherstobevcry~~~~.Howevtr,foreug~ofcategoriesIvaadV~~of 

tll~dateswas~ succe&& and some trichlonm&midates of 2-deoxy sugars (category III) pnwed to be 

~scaMe26.Therefon.SDrthesesugartypesasimpleleavinggroup~vidingtbe~advantageous~astbe 

tri&WcaetWdate moiety was desired, i.e. (i) convenient synthesis. (ii) stability of the activated intumediatc, and (ii) 

mlease of the glycosylating speciea withcatalytic amounts of a promoter. 

ForN-acety- c add (category V) we could demonsbate that plwsphites exhibit tbe nqukd sialyl donor 

pmpe~M! tbe nadily available sialyl pbosphites cau be activated by catalytk amounts of TMSCYIY, thus furnish@@ 

gauglio&ederivative3 ingo&yieM#, as also amEnned by other azac&s’. Therefore, pbosphite moieties could also 

crctaseffldentleavisg~wi.rfiotbersugarcategories.esforinstancekaoseg~anddsoxysu~~:huttheyan 

expecttdly not as effective with 8ldoses 0 and especially 0-acyl prateacd derivative&*9 The lower &vity of 

aldohwowramsy1pllospM~aQd0fconreJponding uronates has bea nzceauly demonsuated by indcparlara studh~~~*~~, 

which exhibit the qubwnent of high acid conceamtions for activation the&y lowering yields aabi/or diaateraaneric 

control, ifneighborlng group assistance by acyl groups is not availabk Because O-benxyl protected fucayl phosphites 

(category III) exhibited under inverse pmcedu~~~ conditions excellent glycosyl donor propetiesl3. it was of intena to 

invest@& 2deoxy sugars and ketoses for further evaluating the scope of glycosyl phosphites as glycosyl donors. 
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lltewi~ occunenceof~~~~desinnatureisagnatstimulustoarriveathighly~veand 

bigh yielding glycoside bond formation, which still can be regarded as a difficult p&lent1~r5. Only for not ditcutly 

accessible tbioonhcesmm as glycosyl donor and reactive acceptors selective a-Wan&de formation in good yields was 

reportedr5. For tbe investigation of fructofuranosyl pkapltitas as donars, readily availahla 13,4,6-mtra-0~benz~yl- 

fructose 116 (Scbemc 1) was reacted with dietllyl pbm?pburocbloridite as #los@litylacng agent intbe prWunue of Hunig’s 

~to~~phosphire2inhighyield.Thesrmctural~~~oftheds_anomcffcouldbebasedan’H-NMRand 

t%WIvIR data17 and their comparison wittl related c6mpounds’*. Reacdon of 2 with 6-o-~ glucose detivative 

319 as aucepmr afforded in acetonitrile as soMnt and TMSOTf as catalyst at 4Doc exclusively the adkauhande 4a17 

in practically quantitative yield. A similar result was obtained in ether as sohmt at nxm temperame. 

Scheme 1 
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Reaction of 2 witb less reactive acceptors having secondary hydmxy groups led to intemsting msuhs. l-O- 

Unpmtected 90 afforded in ~O/CH$12 as solvents and TMSOTf as catalyst at -4OT ptefkntiahy the expected %a- 

suurose” derivative 6aa17 and some “B.a-sucrose” 6j3a 17; the @Mati at the glucose muiety essentially displays the 

anomer ratio in acceptor 5. However, witb Sn(OTfh as catalyst at room temperature the 6acr&ta ratio is due to fast 

anomerixatia~ essentially revemed. thus reflecting the higher reactivity of tbe equatorial hydmxy gmupl. 

Hydmgcstolytic Odebermylation of both compounds. s&quent debenzoylation (MeOWsO, NE@ and 0-acatylation 

(40. pyridh) fumished known O-acetyl derivanves 7aa and 73ck Rspectivelyt43. An eqeciahy imemsnq case 

pDvedtobefiuctofurrnopylationoflactosein3b-O-position(scheme2):with&~asacceporInaherat-4ooCmd 

TMSOTfaSUltalystonlylbL=cr-connected derivative lOaat7 was obtained, though in low yield; with 3b.4~uqmmcmd 

8b24 the yield was increased and a I:1 mixture of lObat and lOb3 was isalated; with 2b,3b,4bO-unptntected gcs only 

the v derivative lO@ was obtained in very bigh yield, thus remind@ of ketosylation with sialyl donors wbem 

similar observations xugardlng pmtection and at least yield sm m&. The attachment of tba fructofuran0syl moiety at 

3b-0 was cor&med by the tH-NMR data of 11w17 and 11~317 otxained from lObj3 and 1CkJi by 0-acetylation. Reaction 

of 2 with 4-o-unplotected acceptor Ps gave under the same conditions again exclusively $XomMXM 12g. similar 

observations ware made for other acceptots with secondary hydmxy gtnrq~? Thus, in generat fnr lass accessible 

secondary hydroxy groups a preference for fl-seleUion aud for mom accesrdble bydroxy groups an a-preference, 

respecrively. is obae~ed which cannut be fully explained. 
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Scheme 3 

The pItWmce of 24ieoxy-glycopyranos1 ‘de moieties in various natural products has already led to diffextnt 

approaches for sekctive glycoside bond formations 26. Reaction of o-atMy protected glucose and gahtose 13a&” with 

bis(trichloroethy1) phsphotioridite in the presence of Hiinig’s base afforded the corresponding phoqbites 14a,bl’ in 

practically quantitative yield as a/&mixtmes. Reacth of 14b with 6-O-unprotected acceptor 15l9 in dichlotrrmethanelh- 

hexam at mom temperature in the presence of BF3.0& as catalyst affonled prefeally known c&i-de 1S3bas 

(a$Watio. 8:l) in good yield. Siy. 14a gave with 4-0-unpXected silyl 2-deoxy-gh~pym~~ide 1617 as less 

reactive xceptor (pmsnce of benzoyl gmups in 3- and 6-position) disxcbatides 19~1 (a$ = 3:2)17; the lower yield is due 

topartiallossofthesilylgroupunderthe~~on~~~.Inneaseinyieldwss~p~byapplyinethcIwerse 
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procedrue~2andchangingthereacdoncondidons;~~m14aand1~a9rroeptorinthep~ ofsno,as 

catalyst disaccharide 2Oa (a$-mtio = 3~1)” was obtained in practically quantitative yield. 

In conclusion, not only phosphites of 3deoxy-2-glyculosonates but also phosphites of normal ketoses and of 2de- 

oxy glycoses exhibit very good glycosyl donor pmperties. Thus the phosphite method ideaUy complements the 

trichlomacetimidate method2 in the higher reactivity range. 
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